

Scale the Universe

Exploring your Universe from Inner to Outer Space

Linda L. Smith

NASA Astrophysics Educator Ambassador Ismith@paulsboro.k12.nj.us

Winter 2008

SCALE the UNIVERSE

What if I were so large (10⁸ times my actual size) that I could stride across the solar system?

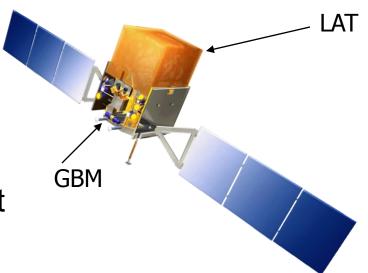
The Booklet

- This book is organized into 3-stand-alone sections:
 - A:
 - A1: Orders of Magnitude
 - A2: Unit Analysis
 - B:
 - B1: Ordering Distance Sticky (What we will do!) and Cutout
 - B2: Using a Log Scale
 - C:
 - C1: Scale the Universe (1)
 - C2: Scale the Universe (2)
 - C3: Scale the Universe (3)
 - C4: Proportional Thinking
 - C5: Ordering Time

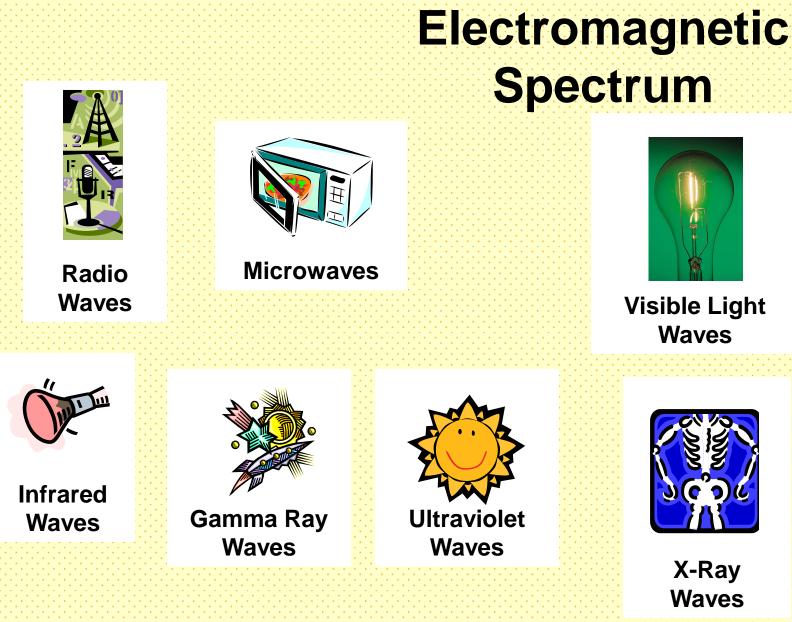
What is GLAST?

GBM

- GLAST: Gamma-Ray Large Area Space Telescope
- Planned for launch in Feb '08
- GLAST has two instruments:
 - Large Area Telescope (LAT)– GLAST Burst Monitor (GBM)
- GLAST will look at many different objects within the energy range of 10keV to 300GeV.



AT


What is GLAST?

- 1st ever collaboration between the BIG (Astrophysics) and the small (Particle Physicists)
 - NASA & DOE
- By studying the largest most energetic things in the Universe (GRB's), answers to the smallest subatomic particle/energy relationships are hoped for.

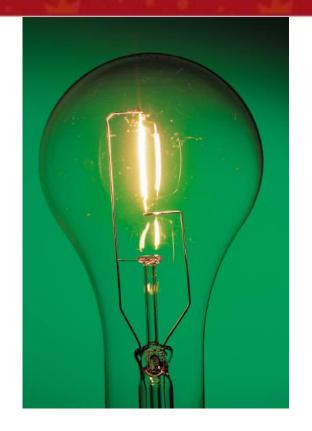
UNIVERSE How Do We Know

- Radio waves are energy that has long wavelengths and small frequencies.
- They are the kind of energy we attach radio signals to broadcast them.
- Stars and gasses in space also emit radio waves

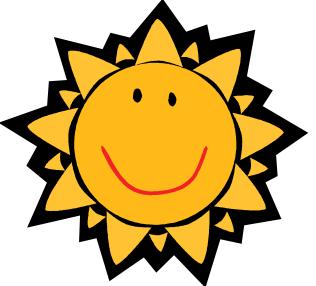
6

UNIVERSE How Do We Know

- Microwaves are about the size of a honeybee
- They make water molecules go nuts
- Microwave ovens and cell phone towers use microwaves


- Infrared energy is used in heat lamps
- Since infrared energy waves are longer, they are easily absorbed into molecules, heating them up, like our french fries at MacDonald's
- The dust between the stars also gives off infrared energy

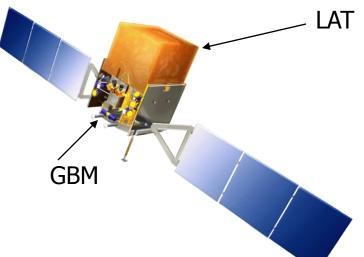
- Medium range light is called Visible Light
- Visible light is the kind of energy that bounces off of me, into your eyes, and allows you to see me.
- Anything you can see with your eyes is in the visible light range



- Ultraviolet wavelengths are very small. That makes their frequencies very high.
- A lot of waves can fit in a space, so they have a lot of energy
- The sun and other stars produce ultraviolet energy

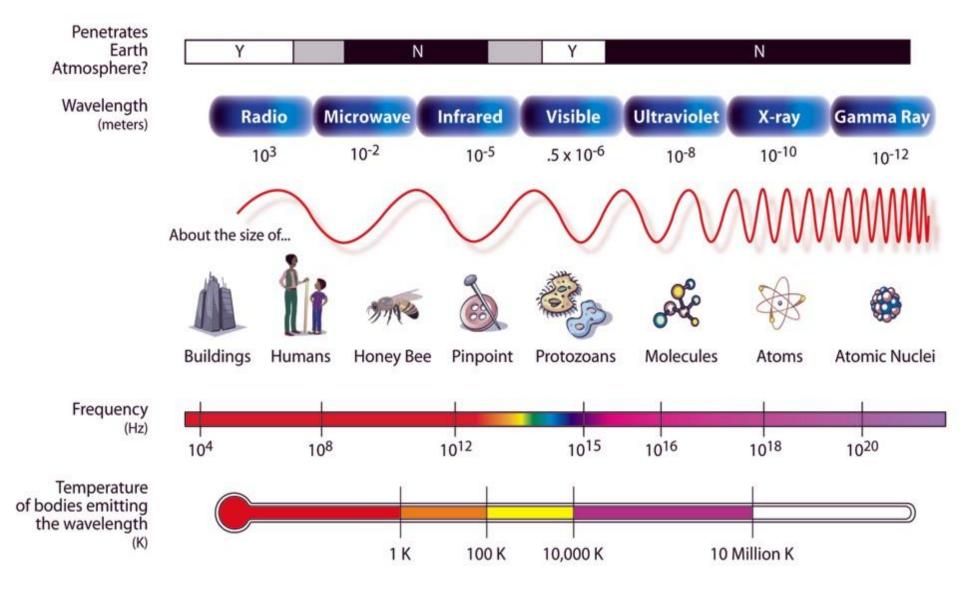
- X-rays are even smaller than Ultraviolet waves, so they have even more energy than ultraviolet rays
- Doctors use x-rays to look at your bones.
- Hot gases in space also emit x-rays

- Gamma rays are even smaller than x-rays. They have even more energy.
- Radioactive materials, and particle accelerators make gamma rays
- The biggest producer of gamma rays is our universe



What is GLAST?

- 1st ever pair conversion telescope
 - Gamma rays are produced in the annihilation of electronpositron pairs as dictated by relativity.
 - The GBM operated on a backwards principle;
 - Turns gamma rays into electronpositron pairs that CAN be traced.


EM Spectrum

- Seven volunteers
 - Place the EM Spectrum stickers in order from smallest to largest wavelength
 - Review order and include specific sizes.

THE ELECTROMAGNETIC SPECTRUM

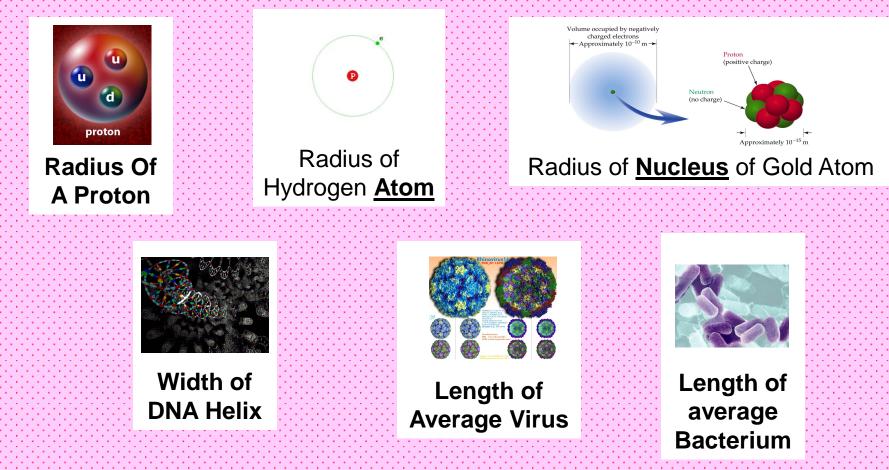
Smallest to Largest

- Name the smallest things that you can think of...
- What are some of the largest things you can think of?
- What about the most distant object?

Distance Tabs

- On your desk there should be one or more pieces of colored paper.
- In colored groups place these in order from smallest to largest.

- Small on left, large on right.

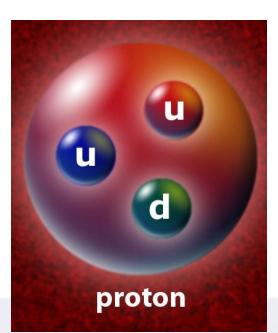


Distance Tabs

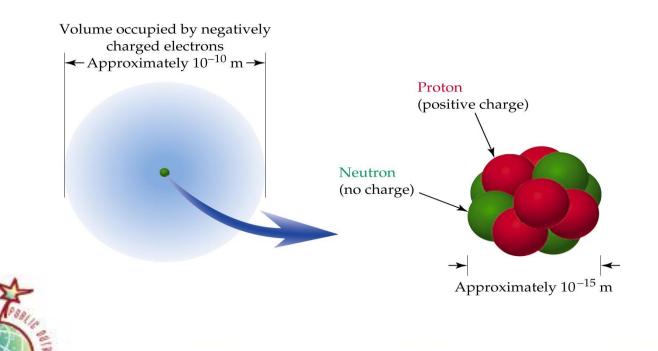
- As with the EM Spectrum stickers...
 - One group places their list on the wall by the EM stickers.
 - Report and record
 - Each group reviews and edits
 - -Another group edits the 1st group's order
 - Discussion & review

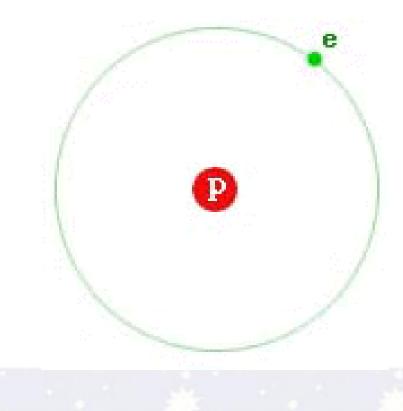
Winter 2008

19

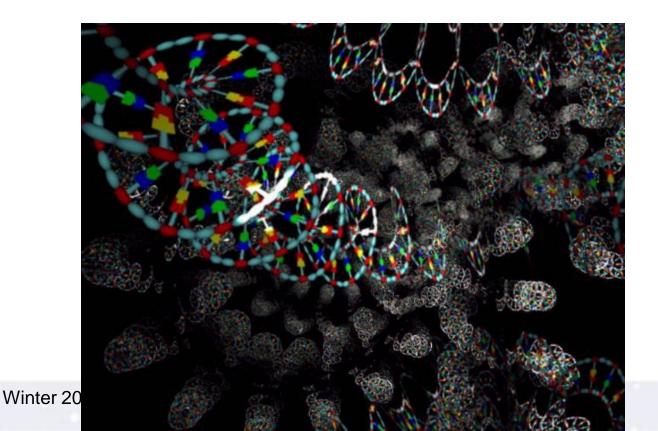

- Six volunteers please
- Arrange the yellow papers from smallest to largest.

- Radius of Proton
- (nucleus of hydrogen atom)
- 8.7 x 10⁻¹⁶ m (.0000000000000087 m)




- Radius of <u>Nucleus</u> of Gold Atom
- 7 x 10⁻¹⁵ m (.000000000000000 m)

- Radius of Hydrogen <u>Atom</u>
- 5.29 x 10⁻¹¹ m (.000000000529 m)

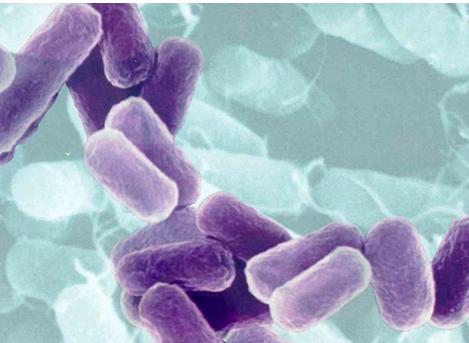


Width of DNA Helix

2x10⁻⁹ m (.00000002 m)

1011830

The Small Scale


Length of Average Virus 7.5 x 10⁻⁸ m (.000000075 m)

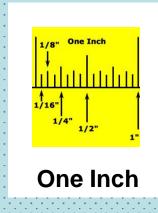
- Length of average Bacterium
- 2 x 10 ⁻⁶ m (.000002 m)

Winter 2008

Small Objects...

- What was the most interesting thing that you found while lining up the small scale distance tabs?
- What do you think students would have the greatest difficulty with here?
- Sometimes I use the human scale first, as a matter of perspective.

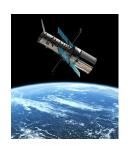
The Human Scale (1)


Width of a human hair

Radius of Pin

Basketball Court

One Foot


Height of "Average" Human

Distance **Sound Travels** in one second

(Thunder follows lightning one mile away by 5 seconds)

Altitude of **GLAST** Orbit

Scale (2)

The Human

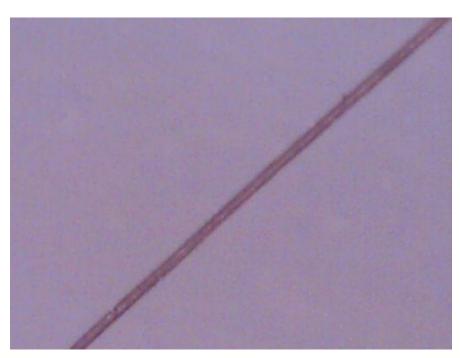
Football Field

29

One Mile

Mount Everest World's tallest mountain

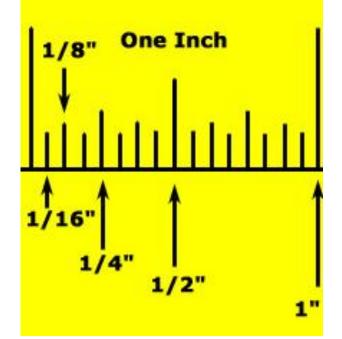
Winter 2008


- 11 volunteers please
- Arrange the blue papers from smallest to largest.

- Width of Human Hair
- 6 x 10 ⁻⁵ m (.00006 m)

Winter 2008

- Radius of Pin Head
- 9 x 10 -4 m (.0009 m)



- One Inch
- 2.54 x 10⁻² m (.0254 m)

- One Foot
- 3.05 x 10⁻¹ m (.305 m)

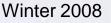
Height of "Average" Human 1.7x10^o m (1.7 m)

Winter 2008

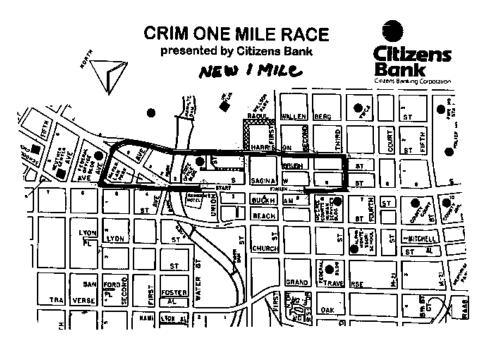
- Basketball Court
- 2.56 x 10⁻¹ m (25.6 m)

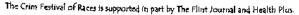
Winter 2008

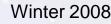
- Football Field
- 9.15 x 10¹ m (91.5 m)



- Distance Sound Travels in one second.
- Thunder follows lightning one mile away by 5 seconds.
- 3.43 x 10² m (343 m)



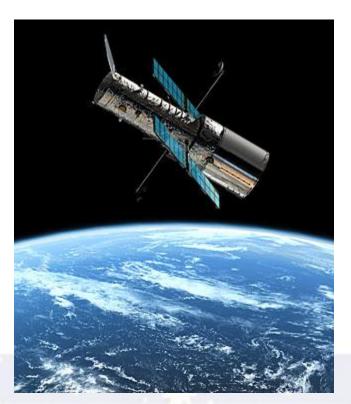




- One Mile
- 1.61 x 10 ³ m (1610 m)

10174200

Mount Everest, Earth's Tallest Mountain 8.85 x 10³ m (8850 m)



- Altitude of GLAST Orbit
- 5.5 x 10 ⁵ m (550,000 m)

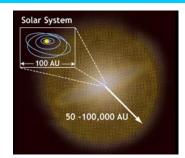
Any surprises?

Radius of our Moon

Radius of the Earth

Solar System & Nearby Stars

Radius of Jupiter

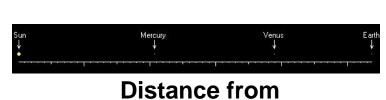


Radius of the Sun

Distance from the Earth to Pluto

Radius of Oort Cloud (from the Sun to the outer edge of our solar system)

Winter 2008


Solar System & Nearby Stars (2)

Distance to Sirius (the Dog Star) Brightest star in our night sky

HD70642 (A sun-like star with a Jupiter-like planet.)

the Earth to the Sun (1 AU)

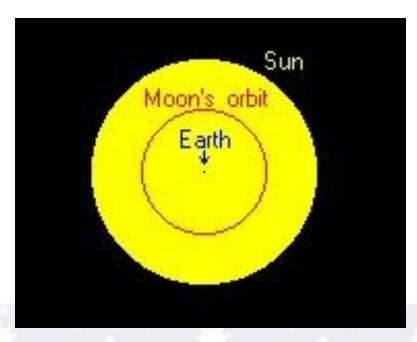
- 10 volunteers please
- Arrange the green papers from smallest to largest.

Radius of our Moon 1.74x10⁶ m (1,740,000 m)

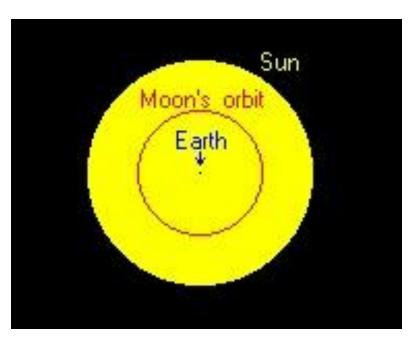
Radius of the Earth

6.38 x 10 ⁶ m (6,380,000 m)

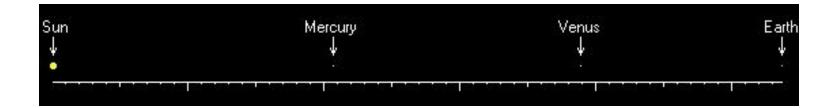
Radius of Jupiter 7.15 x 10⁻⁷ m (71,500,000 m)



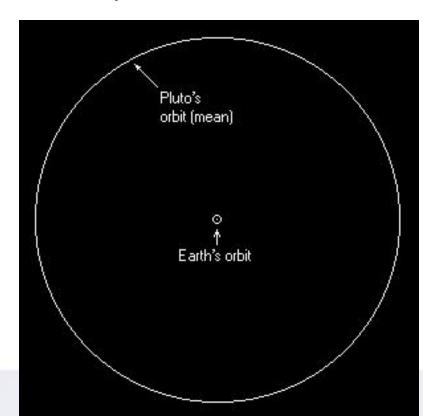
Radius of Moon's Orbit (average distance from Earth) 3.84x10⁸ m (384,000,000 m)



Radius of the Sun 6.95 x10⁸ m (695,000,000 m)

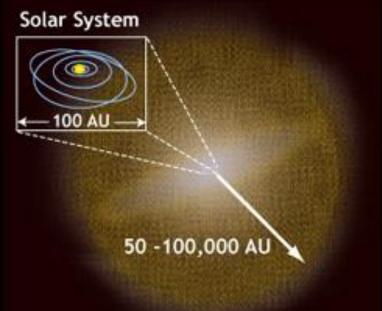


Earth's Orbital Radius = 1 AU1.5x10¹¹ m (150,000,000,000 m)



Pluto's Orbital Radius 5.9x10¹² m (5,900,000,000,000 m)

Winter 2008


52 NASA

•Radius of the Oort Cloud

Objects within this limit still orbit our Sun

1.5 x 10 ¹⁶ m (15,000,000,000,000,000 m)



Distance to Sirius (the Dog Star) Brightest star in our night sky 8.6 x 10 ¹⁶ m (86,000,000,000,000,000 m)


Distance to HD70642 (A sun-like star with a Jupiter-like planet.) 9.4 x 10¹⁷ m (about 94 light years)

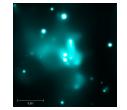
Winter 2008

55

Any Difficulties?

What will kids have difficulty with?

Distance to the Crab Pulsar


(Spinning neuron star in constellation Orion)

Distance to LCM – Large Magellanic Cloud (A dwarf satellite galaxy of our Milky Way)

Winter 2008

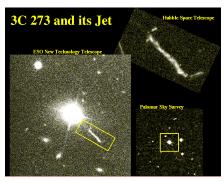
Distance to the Galactic Center of the Milky Way

Astronomical

Scale (1)

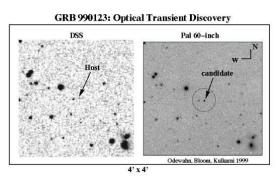
Radius of Milky Way Galaxy

Distance to Andromeda (Largest galaxy in our Local Group)


SCALE the

Astronomical

Scale (2)


Radius of Virgo Supercluster (Our Local Group of galaxies rotates near outer edge)

Distance to AGN 3C 273 (Sustained energy of a trillion suns)

Radius of Observable Universe

Distance to GRB 990123

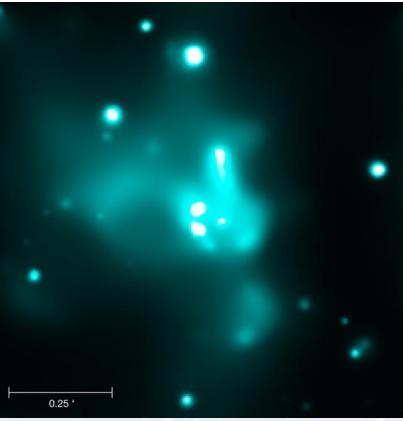
(Equal to the energy of a billion-billion suns)

00

- 9 volunteers please
- Arrange the red papers from smallest to largest.

Distance to the Crab Pulsar, 7x10¹⁹ m

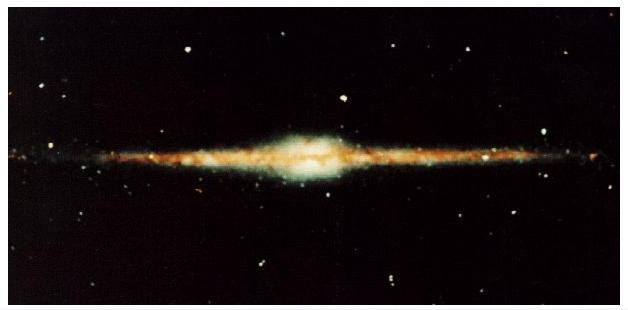
(Spinning neuron star in constellation Orion)



Winter 2008

60 🔨

- Distance to the Galactic Center of the Milky Way
- 2.6 x 10 ²⁰ m



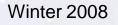
-

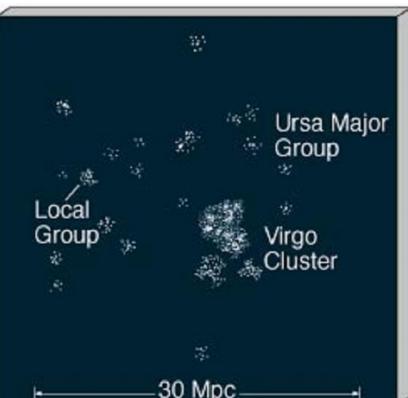
61

Milky Way Galaxy from center to edge = radius $5 \times 10^{20} \text{ m}$

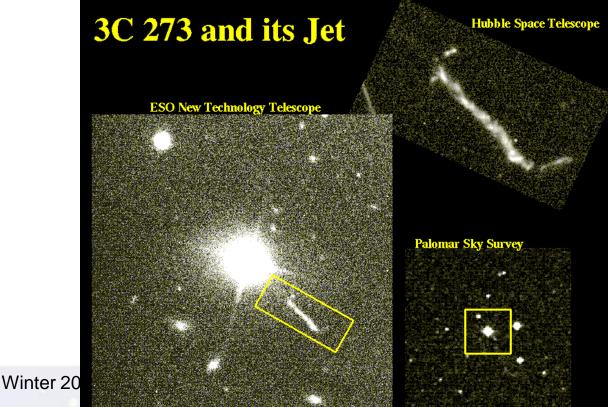
Distance to LCM – Large Magellanic Cloud (A dwarf satellite galaxy of our Milky Way) 1.8 x 10²¹ m

Distance to Andromeda (Largest galaxy in our Local Group) 2.9 x 10²² m


Winter 2008

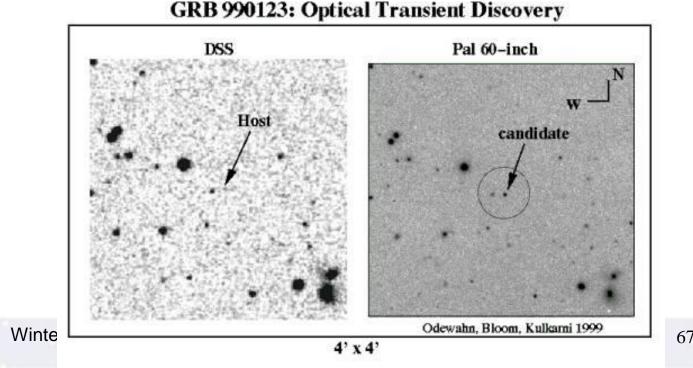

64 NASA

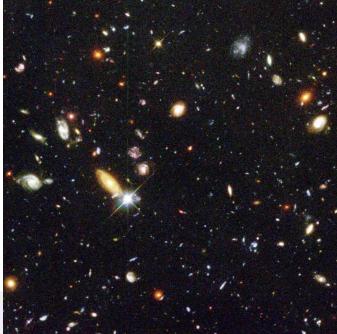
- Radius of Virgo Supercluster
- Our Local Group of galaxies rotates near outer edge
- 6 x 10 ²³ m



66

Distance to AGN 3C 273, 7 x 10²⁵ m


(Sustained energy of a trillion suns)

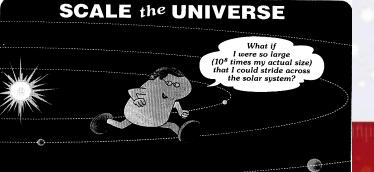


Distance to GRB 990123, 1 x 10²⁶ m (Equal to the energy of a billion-billion suns)

- Radius of Observable Universe
- 1.4 x 10 ²⁶ m
- About 14, 000,000,000 (14 billion) light years

At least 14 billion light-years (or about 100,000,000,000,000,000,000,000 kilometers)

It is full of very small & VERY BIG numbers! Any Astronomical thoughts?



Brainstorm Time

- How can we use this in our science classroom?
 - Introductions and applications of scientific notation
 - Biology Lessons
 - Astronomy Lessons
 - Physics Lessons

7(

Ordering Time

- Repeat the steps of the "Ordering Distance" activity
 - Place in order from short to long duration
 - One group reports
 - Discuss and review

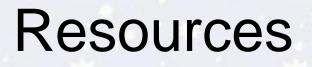
71

Ordering Time, FAST

- There are 11 tabs in the FAST section.
- We used 7 of them in the first EM ordering activity.
- "fast" = periods of EMRadiation

Ordering Time, Average

- There are 12 tabs in the Average section.
- "average" = 1 year or less of time


Ordering Time, SLOW

- There are 13 tabs in the section.
- "slow" = 1 year or more of time

- GLAST Education and Public Mission Website
 - http://glast.sonoma.edu
- Downloadable materials for this book (AND MORE):
 - http://glast.sonoma.edu/teachers/teachers.html
- More Great materials from TOPS:

- <u>http://topscience.org/</u>

Scale the Scientific Notation and tens

 $10000 = 1 \times 10^4$ $1000 = 1 \times 10^3$ $100 = 1 \times 10^2$ $10 = 1 \times 10^{1}$ $1 = 1 \times 10^{0}$ $0.1 = 1 \times 10^{-1}$ $0.01 = 1 \times 10^{-2}$ $0.001 = 1 \times 10^{-3}$ $0.0001 = 1 \times 10^{-4}$ Winter 2008

How this works:

Standard notation

Scientific notation

56,000,000 7 places to the left 5.6x10⁷

0.0003099 3.099x10⁻⁴ 4 places to the right

