

We live in a Solar System that has 1 star Called the Sun

Eight planets go around the Sun in paths we call Orbits

The closest planet is called Mercury

The next closest planet is Venus

The third planet from the Sun is the one we live on called Earth

After Earth comes Mars

Between Mars and the next planet is a ring of rocks called the Asteroid Belt

Jupiter, the largest planet is next in line

Saturn is next in line

Then Uranus

Neptune

And a small dwarf planet called Pluto

Scientist wondered how much space the Solar System takes up.

They didn't have tools to measure with, so they tried to guess.

They knew where the sun was...

They knew they were on Earth

So they made the distance between the two their measuring stick

They decided that the distance from the Earth to the Sun would be called One Astronomical Unit

Or

one AU

for short

If we made a model where

one meter = 1AU

How many meter sticks would we need to get from the Sun to Pluto?

Let's try it!

Planet	AU's from Sun	How many meter sticks we need	
Mercury	0.39	0.39	
Venus	.72	.72	
Earth	1	1	
Mars	1.52	1.52	
Jupiter	5.20	5.20	
Saturn	9.55	9.55	
Uranus	19.2	19.20	
Neptune	30.1	30.10	
Pluto	39.4	39.40	

But WAIT!!!!!

With these numbers we have to go back to the sun to measure for every planet.

That will take forever!!!

With these numbers we have to go back to the sun to measure.

How about if we find the distance between each one?

With these numbers we have to go back to the sun to measure.

Then we only have to walk it once!

Let's Do the Math!

Planet	AU's from Sun	Meters	Distance to next planet
Mercury	0.387	.38 m	.38 m
Venus	.723	.72 m	.23 m
Earth	1	1 m	.52 m
Mars	1.52	1.52 m	3.68 m
Jupiter	5.2	5.2 m	4.35 m
Saturn	9.55	9.55 m	9.65 m
Uranus	19.2	19.20 m	10.90 m
Neptune	30.1	30.10 m	9.30 m
Pluto	39.4	39.40	

That's still not the whole Solar System

Planets never line up in a straight line like we did!

Planets never line up in a straight line like we did!

Some are in the front, some in the back, some on the side

Our solar system model

would need go out from the sun

~

Can you imagine how big that is?

250